Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A second modification of poly[diaquadi-μ-citrato(3-)-trizinc(II)]

Xiang-He Li, Wei-Lin Chen and En-Bo Wang*
Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
Correspondence e-mail: wangenbo@public.cc.jl.cn

Received 3 April 2008; accepted 5 September 2008

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.066 ;$ data-to-parameter ratio $=13.7$.

A second modification of the zinc(II) coordination polymer with citric acid, $\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{n}}$ or $\left[\mathrm{Zn}(\text { citrate })_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, has been synthesized under hydrothermal conditions by reacting zinc acetate with citric acid. The structure contains two unique Zn atoms, one with a distorted octahedral coordination and located on an inversion centre, and one with a distorted tetrahedral coordination. The ZnO_{6} and ZnO_{4} units are linked into layers extending parallel to (010).

Related literature

For the structure of the first polymorph, see: Wu (2008). For general background, see Bourne et al. (2001); Yaghi et al. (1996). Biologically relevant transition-metal citrate compounds have bee reported by Liu et al. (2005) and Xie et al. (2005).

Experimental

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]} & c=9.6951(19) \AA \\
M_{r}=610.34 & \alpha=85.27(3)^{\circ} \\
\text { Triclinic, } P \overline{1} & \beta=77.31(3)^{\circ} \\
a=6.4649(13) \AA & \gamma=80.99(3)^{\circ} \\
b=7.2666(15) \AA & V=438.29(15) \AA^{\circ}
\end{array}
$$

$Z=1$

Mo $K \alpha$ radiation
$\mu=4.16 \mathrm{~mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan ABSCOR (Higashi, 1995)
$T_{\text {min }}=0.389, T_{\text {max }}=0.461$ (expected range $=0.337-0.400)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.066$
$S=1.04$
2004 reflections
146 parameters
$T=298$ (2) K
$0.28 \times 0.26 \times 0.22 \mathrm{~mm}$

4339 measured reflections 2004 independent reflections 1763 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.87 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 3$	$2.0707(18)$	$\mathrm{Zn} 2-\mathrm{O} 4^{\mathrm{ii}}$	$1.9528(18)$
$\mathrm{Zn} 1-\mathrm{O} 6$	$2.0768(18)$	$\mathrm{Zn} 2-\mathrm{O} 5$	$1.9992(19)$
$\mathrm{Zn} 1-\mathrm{O} 7$	$2.1029(18)$	$\mathrm{Zn} 2-\mathrm{O} 8$	$2.0141(19)$
$\mathrm{Zn} 2-\mathrm{O} 2^{\mathrm{i}}$	$1.9475(19)$		

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (20701005/20701006), the Analysis and Testing Foundation of Northeast Normal University and the Ph. D Station Foundation of Ministry of Education (20060200002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2084).

References

Bourne, S. A., Lu, J., Mondal, A., Moulton, B. \& Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2111-2113.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, S. G., Liu, W., Zuo, J. L., Li, Y. Z. \& You, X. Z. (2005). Inorg. Chem. Comтип. 8, 328-330.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, J. (2008). Acta Cryst. E64, m583-m584.
Xie, F. T., Duan, L. M., Chen, X. Y., Cheng, P., Xu, J. Q. \& Wang, T. G. (2005). Inorg. Chem. Commun. 8, 274-277.
Yaghi, O. M., Li, H. \& Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096-9101.

supplementary materials

A second modification of poly[diaquadi- $\mu_{\text {-citrato(3-)-trizinc(II)] }}$

X.-H. Li, W.-L. Chen and E.-B. Wang

Comment

The design and synthesis of coordination polymers with extended frameworks has drawn great attention due to their potential applications in catalysis, ligand exchange and their physical properties (Yaghi et al., 1996; Bourne et al., 2001). The coordination chemistry of biologically relevant transition metal ions toward citric acid has been widely investigated (Liu et al., 2005; Xie et al., 2005.) In this work, a new zinc(II) coordination polymer with citric acid (1) has been synthesized. The structure of (1) is reported here, shown in Fig. 1.

In (1) a compact layered structure is evident. An isolated $\mathrm{Zn}(1)$ ion is situated on an inversion center and is linked with two symmetry-related citrate ligands. It is surrounded in a distorted octahedral coordination by six oxygen atoms from four carboxylate oxygen atoms and two hydroxyl oxygen atoms from the citrate ligands. The $\mathrm{Zn}(1)-\mathrm{O}$ distance are in the range of $2.0707(18)-2.1029(18) \AA$. The $\mathrm{Zn}(2)$ ion is coordinated by three oxygen atoms from three carboxylate ligands and an oxygen from a water molecule in a distorted tetrahedral coordination. The $\mathrm{Zn}(2)$ — O distances are in the range of 1.9475 (19) -2.0141 (19) \AA. The ZnO_{6} and ZnO_{4} units are linked into a layer structure extending parallel to the $a c$ plane (Fig. 2).

Recently, another polymorph of a compound with this composition has been reported by Wu (2008). The main structural difference of (1) and the first polymorph is the coordination of the zinc cations. In the first polymorph solely ZnO_{6} units are present. However, by linking the structural units, a layered structure is likewise formed in this polymorph.

Experimental

Compound (1) was prepared from a weak acidic mixture of zinc acetate ($0.255 \mathrm{~g}, 1 \mathrm{mmol})$, citric acid ($0.49 \mathrm{~g}, 1.5 \mathrm{mmol}$) and a 15 ml alcohol/water mixture, which was sealed in a 30 ml Teflon-lined steel vessel and kept at 433 K under autogenously pressure for three d. After cooling, yellow crystals were isolated and air-dried with a yield of approximately 63%.

Refinement

All H-atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. H atoms of the water molecule were located in difference maps and refined isotropically with $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figures

Fig. 1. A view of the molecule of (1). Displacement ellipsoids are drawn at the 70% probability level. Hydrogen atoms are drawn as small circles of arbitrary radius.

supplementary materials

Fig. 2. 2-D packing arrangement of (1) viewed along the b axis. Color codes: Zn (yellow), O (red), C (grey). Hydrogen atoms are omitted for clarity.

poly[diaquadi- μ-citrato(3-)-trizinc(II)]

Crystal data

$\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=610.34$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.4649$ (13) Å
$b=7.2666$ (15) \AA
$c=9.6951$ (19) \AA
$\alpha=85.27$ (3) ${ }^{\circ}$
$\beta=77.31(3)^{\circ}$
$\gamma=80.99(3)^{\circ}$
$V=438.29(15) \AA^{3}$
$Z=1$
$F_{000}=304$
$D_{\mathrm{x}}=2.312 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2026 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=4.16 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.28 \times 0.26 \times 0.22 \mathrm{~mm}$

2004 independent reflections
1763 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=3.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.066$
$S=1.04$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0291 P)^{2}+0.3186 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

2004 reflections	$\Delta \rho_{\max }=0.87 \mathrm{e} \AA^{-3}$
146 parameters	$\Delta \rho_{\min }=-0.60 \mathrm{e} \AA^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

The highest residual peak, $0.871 \mathrm{e} \mathrm{A}^{3}$, is close to O (1) (with the distance of $c a 0.967 \mathrm{~A}$), to $\mathrm{C}(1)$ with the distance of $c a 1.296 \mathrm{~A}$, but featureless. The deepest hole is $-0.604 \mathrm{e} \mathrm{A}^{3}$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn1	0.0000	0.0000	0.0000	$0.02280(11)$
Zn2	$0.43151(4)$	$-0.21372(4)$	$0.32805(3)$	$0.02389(10)$
C1	$-0.1926(4)$	$0.3065(4)$	$0.4125(2)$	$0.0263(5)$
C2	$-0.0112(4)$	$0.3838(3)$	$0.3087(2)$	$0.0220(5)$
H2A	0.1033	0.3924	0.3569	0.026^{*}
H2B	-0.0624	0.5087	0.2756	0.026^{*}
C3	$0.0768(3)$	$0.2625(3)$	$0.1818(2)$	$0.0179(4)$
C4	$0.2481(4)$	$0.3533(3)$	$0.0755(2)$	$0.0224(5)$
H4A	0.1908	0.4827	0.0582	0.027^{*}
H4B	0.3698	0.3527	0.1189	0.027^{*}
C5	$0.3282(4)$	$0.2647(3)$	$-0.0660(2)$	$0.0213(5)$
C6	$0.1701(4)$	$0.0658(3)$	$0.2287(2)$	$0.0198(4)$
O1	$-0.2934(4)$	$0.1977(5)$	$0.3701(2)$	$0.0669(9)$
O2	$-0.2314(3)$	$0.3509(3)$	$0.53876(18)$	$0.0344(5)$
O3	$0.2747(3)$	$0.1149(3)$	$-0.09162(18)$	$0.0300(4)$
O4	$0.4538(3)$	$0.3523(3)$	$-0.15702(18)$	$0.0300(4)$
O5	$0.2952(3)$	$0.0518(3)$	$0.31332(18)$	$0.0260(4)$
O6	$0.1257(3)$	$-0.0737(2)$	$0.17968(19)$	$0.0324(4)$
O7	$-0.0943(3)$	$0.2466(2)$	$0.11071(17)$	$0.0210(3)$
O8	$0.6828(3)$	$-0.1961(3)$	$0.41525(19)$	$0.0334(4)$
H2	0.7285	-0.0927	0.3885	0.050^{*}
H1	0.6486	-0.2004	0.5051	0.050^{*}
H1A	$-0.191(6)$	$0.237(5)$	$0.173(4)$	$0.049(11)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0297(2)$	$0.0247(2)$	$0.01762(18)$	$-0.01201(16)$	$-0.00723(15)$	$-0.00034(15)$
Zn2	$0.02577(16)$	$0.02446(16)$	$0.01887(15)$	$-0.00433(11)$	$0.00168(10)$	$-0.00202(11)$
C1	$0.0259(12)$	$0.0329(13)$	$0.0189(10)$	$-0.0080(10)$	$0.0010(9)$	$-0.0016(10)$
C2	$0.0240(11)$	$0.0246(12)$	$0.0160(10)$	$-0.0050(9)$	$0.0003(8)$	$-0.0023(9)$
C3	$0.0198(10)$	$0.0219(11)$	$0.0130(9)$	$-0.0066(9)$	$-0.0025(8)$	$-0.0018(8)$
C4	$0.0256(12)$	$0.0246(12)$	$0.0168(10)$	$-0.0103(9)$	$0.0010(9)$	$-0.0011(9)$
C5	$0.0185(11)$	$0.0260(12)$	$0.0182(10)$	$-0.0029(9)$	$-0.0011(8)$	$-0.0014(9)$
C6	$0.0210(11)$	$0.0242(11)$	$0.0140(9)$	$-0.0064(9)$	$-0.0011(8)$	$-0.0010(9)$
O1	$0.0598(15)$	$0.119(2)$	$0.0318(11)$	$-0.0641(17)$	$0.0145(10)$	$-0.0292(14)$
O2	$0.0445(11)$	$0.0434(11)$	$0.0162(8)$	$-0.0231(9)$	$0.0056(7)$	$-0.0072(8)$
O3	$0.0324(10)$	$0.0317(10)$	$0.0256(9)$	$-0.0144(8)$	$0.0045(7)$	$-0.0106(8)$
O4	$0.0338(10)$	$0.0315(10)$	$0.0215(8)$	$-0.0144(8)$	$0.0094(7)$	$-0.0056(7)$
O5	$0.0269(9)$	$0.0278(9)$	$0.0254(8)$	$-0.0009(7)$	$-0.0118(7)$	$-0.0031(7)$
O6	$0.0510(12)$	$0.0192(9)$	$0.0351(10)$	$-0.0106(8)$	$-0.0243(9)$	$0.0041(7)$
O7	$0.0204(8)$	$0.0277(9)$	$0.0157(7)$	$-0.0045(7)$	$-0.0047(6)$	$-0.0013(6)$
O8	$0.0377(11)$	$0.0377(11)$	$0.0253(9)$	$-0.0043(8)$	$-0.0086(8)$	$-0.0020(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Zn1-O3	2.0707 (18)
$\mathrm{Zn} 1-\mathrm{O} 3{ }^{\text {i }}$	2.0707 (18)
$\mathrm{Zn} 1-\mathrm{O} 6^{\text {i }}$	2.0768 (18)
Zn1-O6	2.0768 (18)
$\mathrm{Zn} 1-\mathrm{O} 7^{\text {i }}$	2.1029 (18)
Zn1-07	2.1029 (18)
$\mathrm{Zn} 2-\mathrm{O} 2{ }^{\text {ii }}$	1.9475 (19)
$\mathrm{Zn} 2-\mathrm{O} 4^{\text {iii }}$	1.9528 (18)
Zn2-O5	1.9992 (19)
Zn2-O8	2.0141 (19)
$\mathrm{C} 1-\mathrm{O} 1$	1.245 (3)
$\mathrm{C} 1-\mathrm{O} 2$	1.254 (3)
C1-C2	1.516 (3)
C2-C3	1.526 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
C2-H2B	0.9700
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 3{ }^{\text {i }}$	180.00 (9)
O3-Zn1-O6 ${ }^{\text {i }}$	91.13 (8)
O3 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 6^{\text {i }}$	88.87 (8)
O3-Zn1-O6	88.87 (8)
O3 ${ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 6$	91.13 (8)
O6 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{O} 6$	180.00 (11)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 7^{\text {i }}$	94.73 (7)

$\mathrm{C} 3-\mathrm{O} 7$	$1.449(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.529(3)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.535(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.515(3)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{C} 5-\mathrm{O} 3$	$1.252(3)$
$\mathrm{C} 5-\mathrm{O} 4$	$1.264(3)$
$\mathrm{C} 6-\mathrm{O} 6$	$1.252(3)$
$\mathrm{C} 6-\mathrm{O} 5$	$1.261(3)$
$\mathrm{O} 2-\mathrm{Zn} 2 \mathrm{ii}$	$1.9475(19)$
$\mathrm{O} 4-\mathrm{Zn} 2 \mathrm{iii}$	$1.9528(18)$
$\mathrm{O} 7-\mathrm{H} 1 \mathrm{~A}$	$0.78(4)$
$\mathrm{O} 8-\mathrm{H} 2$	0.8500
$\mathrm{O} 8-\mathrm{H} 1$	0.8500
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	
$\mathrm{O} 7-\mathrm{C} 3-\mathrm{C} 4$	$109.47(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$107.60(17)$
$\mathrm{O} 7-\mathrm{C} 3-\mathrm{C} 6$	$110.10(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$108.42(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$110.98(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$110.19(19)$
	$116.49(18)$

sup-4

supplementary materials

O3 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 7^{\text {i }}$	85.27 (7)	C5-C4-H4A	108.2
O6 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 7^{\text {i }}$	78.62 (7)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.2
O6- $\mathrm{Zn} 1-\mathrm{O} 7^{\text {i }}$	101.38 (7)	C5-C4-H4B	108.2
O3-Zn1-O7	85.27 (7)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.2
O3 ${ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{O} 7$	94.73 (7)	H4A-C4-H4B	107.3
O6 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 7$	101.38 (7)	O3-C5-O4	122.0 (2)
O6-Znl-O7	78.62 (7)	O3-C5-C4	122.6 (2)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 7$	180.00 (8)	O4-C5-C4	115.4 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 2-\mathrm{O} 4^{\text {iii }}$	109.95 (8)	O6-C6-O5	122.3 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 2-\mathrm{O} 5$	108.17 (9)	O6-C6-C3	119.8 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 5$	119.97 (8)	O5-C6-C3	117.8 (2)
$\mathrm{O} 2{ }^{\text {iii }} \mathrm{Zn} 2-\mathrm{O} 8$	108.62 (8)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Zn} 2{ }^{\text {ii }}$	116.04 (16)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 8$	106.38 (8)	C5-O3-Zn1	128.61 (16)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{O} 8$	103.11 (8)	C5-O4- $\mathrm{Zn} 2{ }^{\text {iii }}$	111.81 (15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.6 (2)	C6-O5-Zn2	108.96 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.9 (2)	C6-O6-Zn1	111.25 (16)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.5 (2)	C3-O7-Zn1	106.24 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	112.11 (19)	C3-O7-H1A	103 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	$\mathrm{Zn} 1-\mathrm{O} 7-\mathrm{H} 1 \mathrm{~A}$	111 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	$\mathrm{Zn} 2-\mathrm{O}-\mathrm{H} 2$	109.3
C1-C2-H2B	109.2	Zn2-O8-H1	111.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	H2-O8-H1	107.6
H2A-C2-H2B	107.9		

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y,-z+1$; (iii) $-x+1,-y,-z$.
supplementary materials

Fig. 1

Fig. 2

